# релятивистский метод связанных кластеров в пространстве фока и моделирование электронных возбуждений в соединениях тяжелых элементов

А Зайцевский

НИЦ КИ - ПИЯФ МГУ

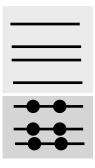
#### о чем

## релятивистский метод связанных кластеров в пространстве Фока (Fock space relativistic coupled clusters, FS RCC):

#### технология моделирования из первых принципов

локальных

в твердом теле


электронных переходов –(СТЕР) → электронных возбуждений в молекулах / кластерах включающих тяжелые атомы

- специфика проблемы:

бессмысленность нерелятивистского рассмотрения огромная роль электронно-электронных корреляций плотность электронного спектра

- основы технологии
- а где FS RCC были раньше?
- что получается и каковы перспективы

#### кластерное приближение



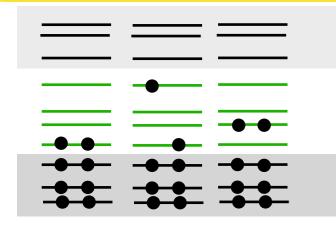
независимые частицы в среднем поле  $\Phi_{
m HF}$  (вакуум Ферми)

"рассеяние электронов на электронах"  $\Omega$ 

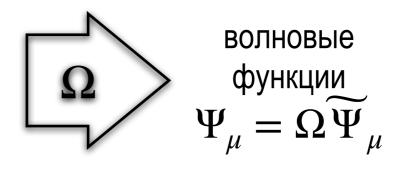
коррелированная система электронов  $\Psi = \Omega \Phi_{HF}$ 

амплитуды сложных процессов рассеяния  $\overline{e}$  /  $\overline{e}$ , не определяемые непосредственно: ~ произведения амплитуд более простых процессов

Coester Kümmel 1960


экспоненциальный  $\Omega = e^T$ , волновой оператор

кластерный оператор - линейная комбинация операторов возбуждений  $\Omega=e^T,\ T=T_1+T_2\quad (T=T_1+T_2+T_3\ etc)$ 


$$T = \underbrace{\begin{array}{c} \\ \\ \end{array}} + \underbrace{\begin{array}{c} \\$$

# релятивистский метод связанных кластеров в пространстве Фока (FS RCC)

#### модельное пространство (CAS)



модельные волновые функции  $\widetilde{\Psi}_{\mu} \in \operatorname{CAS}$ 



(могут быть и "активные" дырки)

Lindgren 1978

#### разумное приближение, только если амплитуды невелики

релятивистский гамильтониан *Н*  эффективный гамильтониан  $\widetilde{H}$  в модельном пространстве



электронные энергии модельные волновые функции

# релятивистский метод связанных кластеров в пространстве Фока (FS RCC): что такое H ?

популярные модели

- Дирака Кулона
- полулокальные релятивистские ЕСР

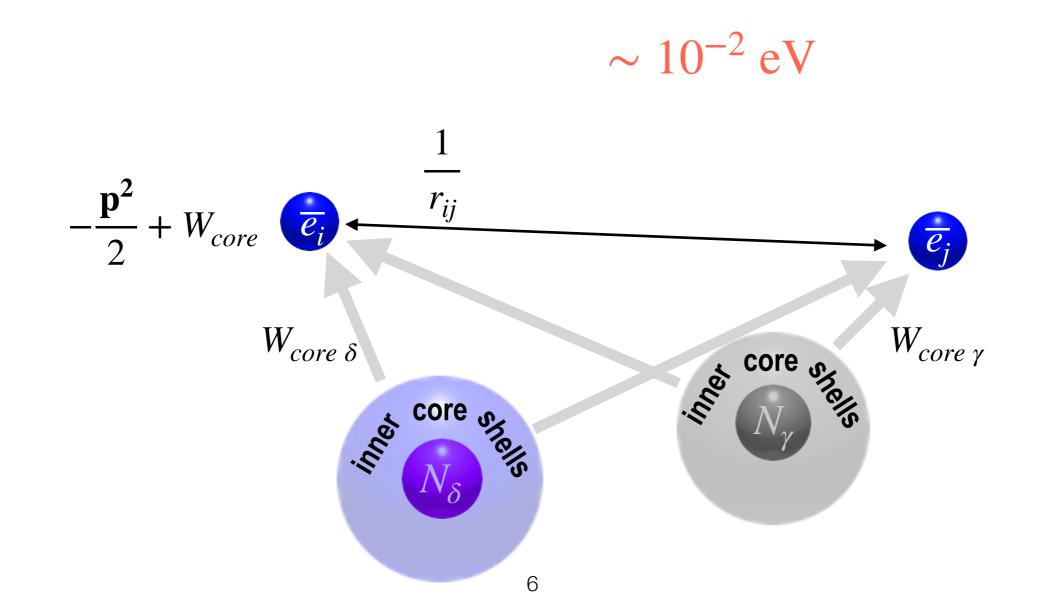
актиниды: ошибка для энергий электронных переходов

 $\sim 10^{-1} \, \text{eV}$ 

модельный потенциал Шабаева с соавт.

модель Дирака - Кулона - Брейта (Гонта) [NPA] + QED (DCG+QED)

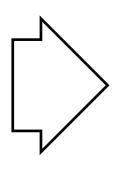
$$\underbrace{\frac{C(\alpha\mathbf{p})+c^2\beta+V_{nuc}}{\text{дираковский}}}_{\text{гамильтониан}} + \underbrace{\frac{1}{SE+VP}}_{+SE+VP} \underbrace{\frac{1}{r_{ij}}+\overset{Breit}{G_{ij}+R_{ij}}}_{-r_{ij}}$$


$$\underbrace{\overline{c_{ij}}}_{V_{nuc}\gamma}(\mathbf{r}) = \int d\mathbf{r}' \frac{\rho_{\gamma}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$$

 $< 10^{-3} \text{ eV}$ 

# релятивистский метод связанных кластеров в пространстве Фока (FS RCC): что такое H ?

## модель обобщенных (гатчинских) псевдопотенциалов (GRPP)


- состояния подсистемы валентных и субвалентных / "внешних остовных" электронов
- "нерелятивисткие" электроны в сложно устроенном поле
- релятивистские эффекты (включая Брейта) и КЭД имитируются одночастичными  $W_{core}$
- $W_{core}$  нелокальны, удаляемых оболочек мало (28  $\overline{e}$  для актинидов)



# релятивистский метод связанных кластеров в пространстве Фока (FS RCC): амплитудные уравнения

размерная согласованность:

физически разумное поведение результатов при фрагментации системы



"валентная универсальность"

одновременно решаются задачи для меньшего числа активных (квази)частиц степень

$$T^{(0)} = \mathcal{F}^{(0)}(H, T^{(0)})$$

$$\downarrow T^{(0)}$$

$$T^{(1)} = \mathcal{F}^{(1)}(H, T^{(0)}, T^{(1)})$$

$$T^{(1)} = \mathcal{F}^{(1)}(H, T^{(0)}, T^{(1)})$$

$$\downarrow T^{(0)}, T^{(1)}$$

$$T^{(2)} = \mathcal{F}^{(2)}(H, T^{(0)}, T^{(1)}, T^{(2)})$$
 2

. .

в принципе решений великое множество, имеют смысл только с амплитудами <<1

- хорошо, если найдется хоть одно

# релятивистский метод связанных кластеров в пространстве Фока (FS RCC): амплитудные уравнения - способы решения

#### итерациями "as is" (схема Якоби)

- когда работает хорошая физическая модель
- неустойчива, кроме состояний типа 0h1p, 1h0p, 1h1p ("вторгающие состояния")

$$T^{(0)} = \mathcal{F}^{(0)}(H, T^{(0)}) \tag{4}$$

$$T^{(1)} = \mathcal{F}^{(1)}(H, T^{(0)}, T^{(1)})$$
 2

$$T^{(2)} = \mathcal{F}^{(2)}(H, T^{(0)}, T^{(1)}, T^{(2)})$$

#### квадратные уравнения $\Longrightarrow$ уравнения на собственные значения

Sinha et al CPL 154 544 (1989) Meissner JCP 108 9227 (1998)

- решения получатся всегда
- дорого, полностью релятивистские реализации неизвестны до сих пор
- умеренные амплитуды несовместимы с непрерывностью потенциальных поверхностей

## выход - изменение постановки задачи: снижение требований к H и $\Omega$ : наряду с "хорошими" - буферные модельные состояния

- решаем уравнения с искаженной правой частью ("сдвиг знаменателей")
- экстраполируем к нулевому искажению то, что относится к "хорошим" модельным состояниям

Eliav et al JCP 122 224113 (2005), Zaitsevskii Eliav IJQC 118 e25772 (2018)

#### или

- переформулируем задачу так, чтобы "хорошие" состояния остались невредимы при искажениях (теория промежуточных гамильтонианов)

  Landau et al Adv. Quantum Chem 39 171 (2001), Zaitsevskii et al IJQC 123 e27077 (2023)
- широкая область применения
- экономичность
- релятивистская реализация (код **expT**)

# релятивистский метод связанных кластеров в пространстве Фока (FS RCC): свойства первого порядка

$$D_{\mu\nu} = \langle \Psi_{\mu} \, | \, D \, | \, \Psi_{\nu} \rangle N_{\mu}^{-1} N_{\nu}^{-1} = \langle \widetilde{\Psi}_{\mu} \, | \, \Omega^{\dagger} D \Omega \, | \, \widetilde{\Psi}_{\nu} \rangle N_{\mu}^{-1} N_{\nu}^{-1}$$

(квази)бесконечный ряд по степеням T

$$D: H(\mathscr{E}) = H(0) + D \cdot \mathscr{E}$$

средние значения: расчет в конечном поле

$$\begin{array}{ccc}
\Delta\mathscr{E} & \Delta\mathscr{E} \\
\hline
2 & \\
& \longrightarrow
\end{array}$$

$$D_{\mu\mu}(r) \approx \frac{E_i\left(r,\frac{\Delta\mathcal{E}}{2}\right) - E_i\left(r,-\frac{\Delta\mathcal{E}}{2}\right)}{\Delta\mathcal{E}}$$

## релятивистский метод связанных кластеров в пространстве Фока (FS RCC): свойства первого порядка

переходные свойства (недиагональные матричные элементы)

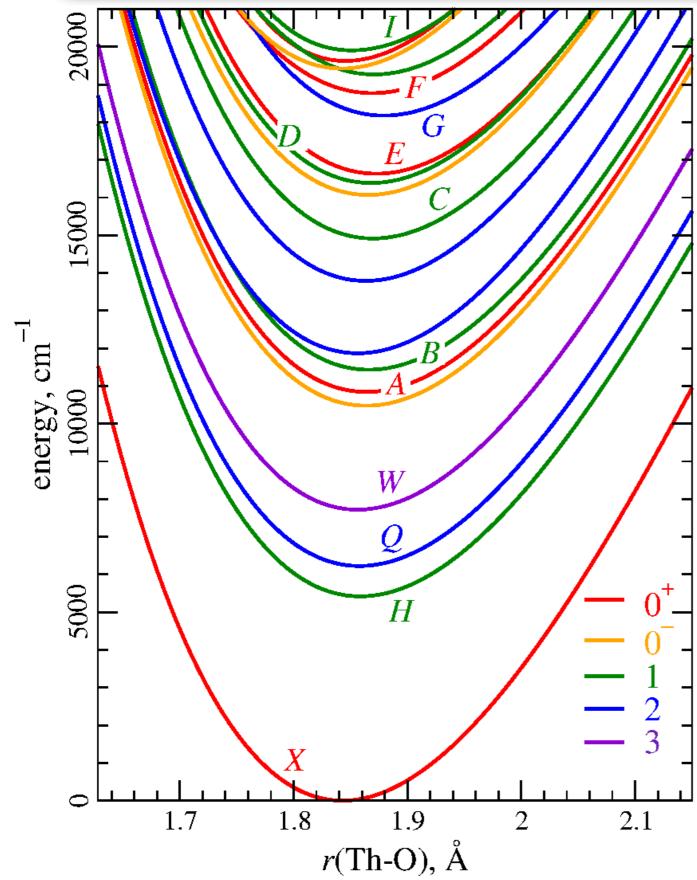
$$\left| \langle \Psi_{\mu} | D | \Psi_{\nu} \rangle \right|^{2} = \left| \langle \widetilde{\Psi}_{\mu} | \widetilde{D} | \widetilde{\Psi}_{\nu} \rangle \right|^{2}$$

эффективный оператор свойства  $\widetilde{D} = \left(P\Omega^\dagger\Omega P\right)_{\rm Cl}^{-1} \left(\Omega^\dagger D\Omega\right)_{\rm Cl}$ 

| "аналитический" подход $(\Lambda	ext{-ypaвнeния})$ | техника конечного<br>поля       |
|----------------------------------------------------|---------------------------------|
| "точно"                                            | приближенно                     |
| дорого                                             | часто недешево                  |
| отдельно для каждой<br>пары состояний              | для всех пар<br>состояний сразу |

замена рядов конечными суммами приближенно  $\mathcal{O}(T^2)$ : почти даром для всех пар состояний сразу

#### программная реализация: код ехрТ (НИЦ КИ - ПИЯФ)

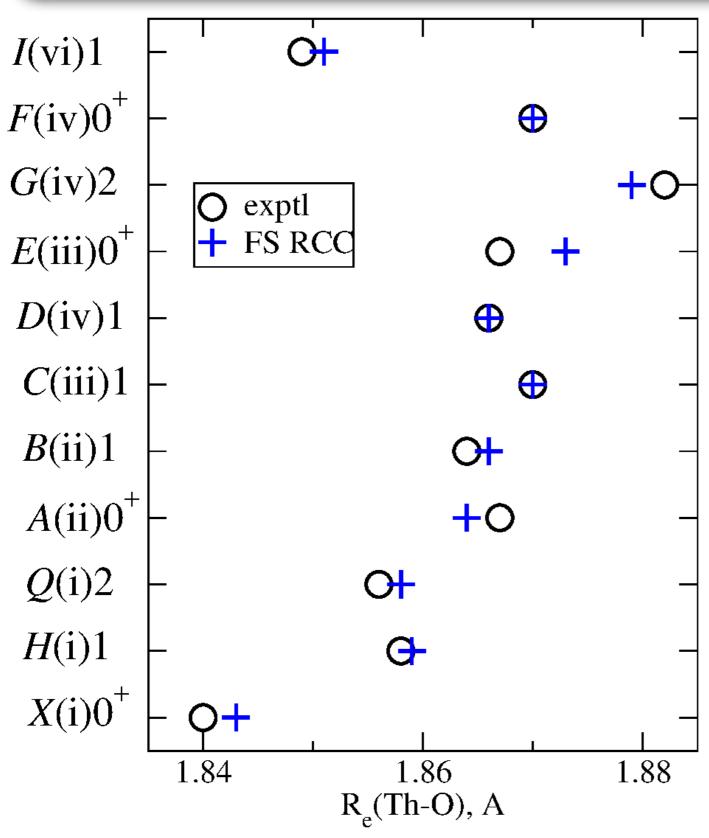

Oleynichenko Zaitsevskii Eliav, Commun. Comput. Inf. Sci., 1331, 375-386 (2020)

http://www.qchem.pnpi.spb.ru/expt https://github.com/aoleynichenko/EXP-T

#### √FS RCC (CCSD, CCSDT-1,2,3, CCSDT)

- √до **3 электронов** на открытой оболочке
- √динамический сдвиг энергетических знаменателей и **паде-** экстраполяция к нулевому сдвигу
- √промежуточные гамильтонианы с неполными главными модельными пространствами (то есть для молекулярных/кластерных расчетов)
- √переходные свойства конечно-разностный метод и приближение второго порядка по амплитудам,
- √аппарат перехода от схемы связи "с" по Хунду (релятивистские адиабатические состояния) к схеме связи "а" (состояния нерелятивистской симметрии спин-орбитальные взаимодействия = то, для чего строят модели спектроскописты)
- √расширяемый/дополняемый код (**Lego**)

### FS RCCSD: расчет энергий как функций координат ядер - ThO




адиабатические энергии переходов ( $\Delta T_e$ ) для  $T_e \leq 20\,000~{\rm cm}^{-1}$ : погрешности 100-400 cm $^{-1}$  всегда меньше половины колебательного кванта  $\omega_e$ 



уверенное отнесение спектральных полос

# FS RCCSD: расчет энергий как функций координат ядер - ThO изменение длины связи при электронном возбуждени



 $\omega_e$  обычно эксп.  $\pm$  5 cm<sup>-1</sup>

точность достаточна для определения возможности организации квазизамкнутого оптического цикла

"laser coolability"?

### FS RCCSD: значения перманентного дипольного момента ThO

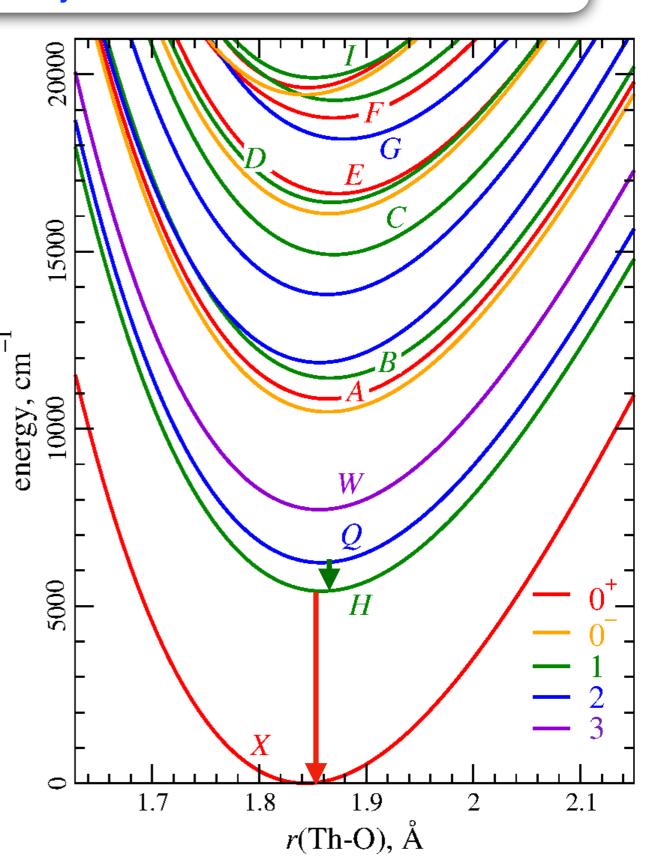
| состояние       | v | эксперимент                                                  | FS RCC |
|-----------------|---|--------------------------------------------------------------|--------|
| X0 <sup>+</sup> | 0 | 2.78±0.01*                                                   | 2.75   |
| <i>H</i> 1      | 0 | 4.098±0.003** 4.24±0.15 <sup>†</sup> 4.25±0.02 <sup>††</sup> | 4.13   |
| <i>Q</i> 2      | 0 | 4.07±0.06×                                                   | 4.04   |
| <i>C</i> 1      | 0 | 2.60±0.04×                                                   | 2.52   |
| E0+             | 1 | 3.53±0.01*                                                   | 3.45   |

<sup>\*</sup> Wang (...Heaven) JCP **134**, 031102 (2011)

<sup>\*\*</sup> Hess, PhD (2014)

<sup>†</sup> Vutna (... DeMille) PRA 84, 034502)(2011)

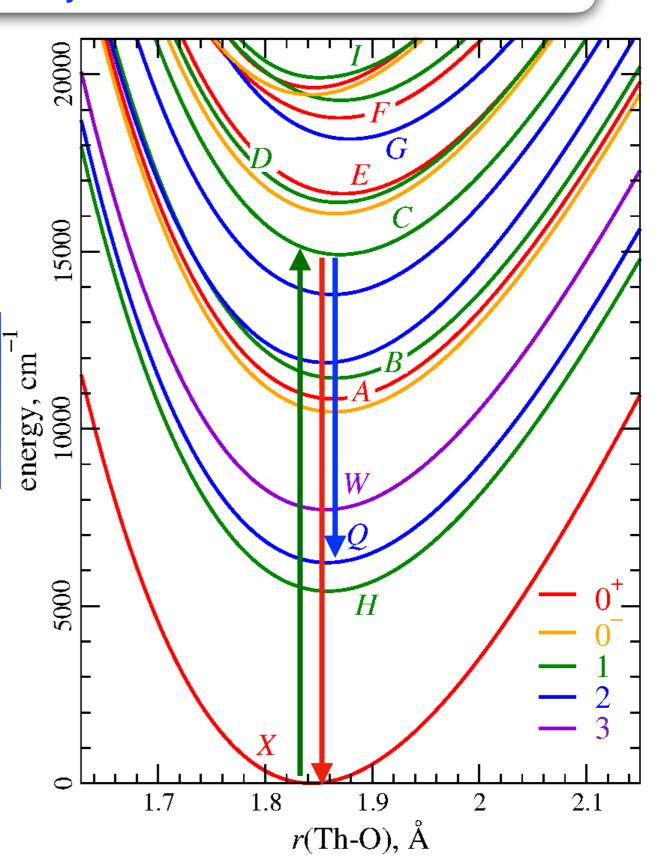
<sup>††</sup> Kokkin (...DeMille) PRA 91, 042508 (2015)


<sup>&</sup>lt;sup>×</sup> Wu (...DeMille) New J. Phys., vol. 22, p. 023013, 2020

## FS RCCSD - дипольные моменты переходов: радиационные времена жизни возбужденных состояний ThO

Zaitsevskii et al., Mol. Phys., e2236246 (2023)

|                                        | exptl                                                                       | FS RCC                     |
|----------------------------------------|-----------------------------------------------------------------------------|----------------------------|
| <i>H</i> 1                             | 4.2±0.5 ms *                                                                | 3.8 ms                     |
| <i>Q</i> 2                             | $>$ 62 ms $^{	imes}$                                                        | <b>177</b> ms              |
| <i>C</i> 1 → <i>Q</i> 2                | > 480 ns <sup>†</sup><br>468±30 ns <sup>††</sup><br>5.4±1.3 μs <sup>×</sup> | 400 ns<br>5.5 μs           |
| <i>I</i> 1  → <i>H</i> 1  → <i>Q</i> 2 | 115±4 ns †† 2.3 μs †† 3.8 μs ††                                             | 141 ns<br>2.4 μs<br>3.4 μs |


<sup>\*</sup> Ang (...DeMille, Doyle) *PRA* **106**, 022808, (2022) × Wu (...DeMille) *New J. Phys.* **22**, 023013 (2020) † Hutzler (... DeMille, Doyle) *PCCP* **13**, 18976 (2011) †† Kokkin (...DeMille) PRA 90, 062503 (2014)



## FS RCCSD - дипольные моменты переходов: радиационные времена жизни возбужденных состояний ThO

Zaitsevskii et al., Mol. Phys., e2236246 (2023)

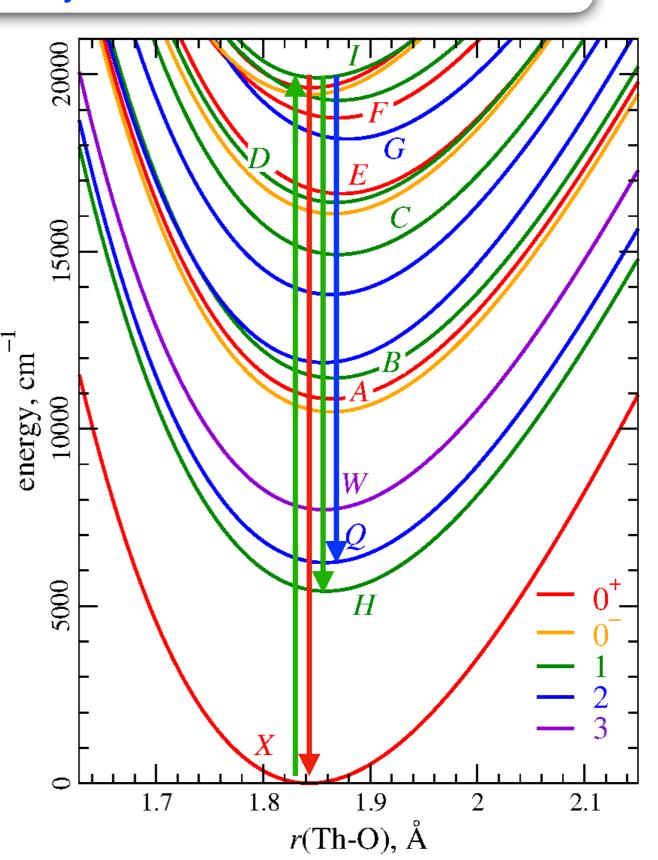
|                            | exptl                                          | FS RCC           |
|----------------------------|------------------------------------------------|------------------|
| <i>H</i> 1                 | 4.2±0.5 ms *                                   | 3.8 ms           |
| <i>Q</i> 2                 | $>$ 62 ms $^{	imes}$                           | <b>177</b> ms    |
| <i>C</i> 1 → <i>Q</i> 2    | > 480 ns †<br>468±30 ns ††<br>5.4±1.3 μs×      | 400 ns<br>5.5 μs |
| <i>I</i> 1<br>→ <i>H</i> 1 | 115±4 ns <sup>††</sup><br>2.3 μs <sup>††</sup> | 141 ns<br>2.4 μs |
| <i>→Q</i> 2                | 3.8 μs ††                                      | 3.4 µs           |



<sup>\*</sup> Ang (...DeMille, Doyle) *PRA* **106**, 022808, (2022)

<sup>×</sup> Wu (...DeMille) *New J. Phys.* **22**, 023013 (2020)

<sup>†</sup> Hutzler (... DeMille, Doyle) *PCCP* **13**, 18976 (2011)

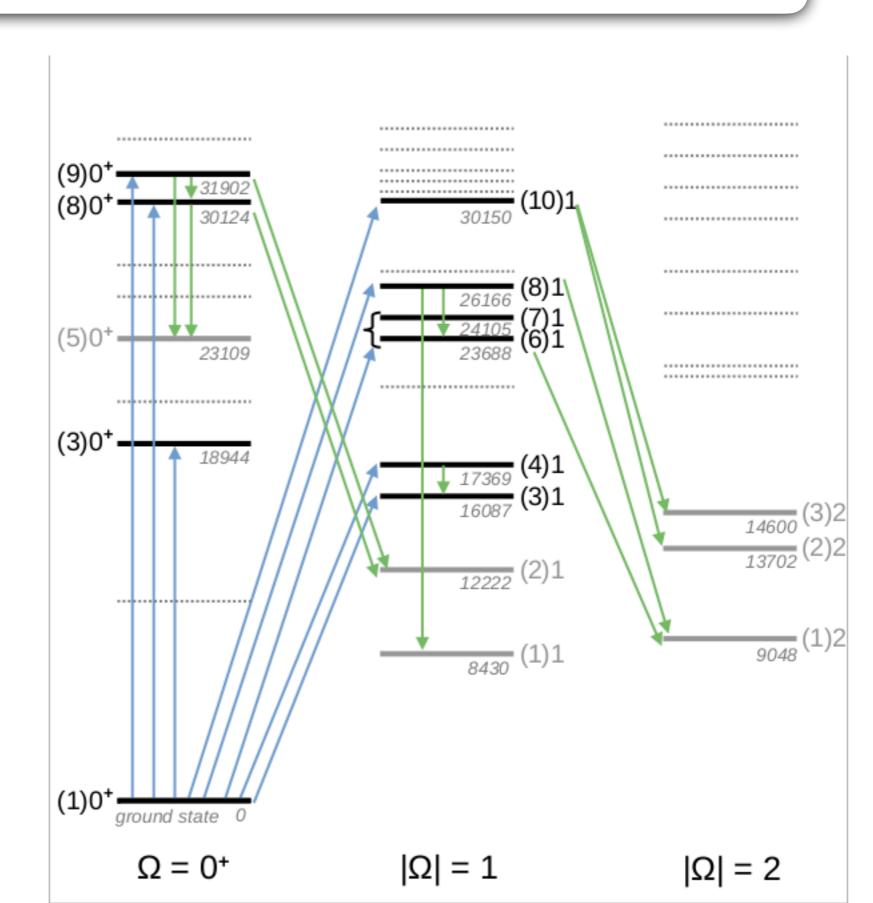

<sup>††</sup> Kokkin (...DeMille) PRA 90, 062503 (2014)

# FS RCCSD - дипольные моменты переходов: радиационные времена жизни возбужденных состояний ThO

Zaitsevskii et al., Mol. Phys., e2236246 (2023)

|                                        | exptl                                     | FS RCC                     |
|----------------------------------------|-------------------------------------------|----------------------------|
| <i>H</i> 1                             | 4.2±0.5 ms *                              | 3.8 ms                     |
| <i>Q</i> 2                             | $>$ 62 ms $^{\times}$                     | <b>177</b> ms              |
| <i>C</i> 1 → <i>Q</i> 2                | > 480 ns †<br>468±30 ns ††<br>5.4±1.3 μs× | 400 ns<br>5.5 μs           |
| <i>I</i> 1  → <i>H</i> 1  → <i>Q</i> 2 | 115±4 ns ††<br>2.3 μs ††<br>3.8 μs ††     | 141 ns<br>2.4 μs<br>3.4 μs |

<sup>\*</sup> Ang (...DeMille, Doyle) *PRA* **106**, 022808, (2022) × Wu (...DeMille) *New J. Phys.* **22**, 023013 (2020) † Hutzler (... DeMille, Doyle) *PCCP* **13**, 18976 (2011) †† Kokkin (...DeMille) PRA 90, 062503 (2014)




## FS RCCSD - полный анализ спектра молекулы AcF до 35 000 см $^{-1}$

Skripnikov et al., *J Chem Phys* **159** 124301 (2023)

- ✓ потенциальные кривые
- ✓ молекулярные постоянные
- √ вероятности переходов
- √ коэффициенты ветвления
- ✓ радиационные времена жизни

исчерпывающая информация для постановки экспериментов по поиску "новой физики"



## FS RCCSD - приложения: прогнозирование спектров и поиск квазизамкнутых оптических циклов для охлаждения

#### AcOH+:

потенциально лазерноохлаждаемый линейный молекулярный ион для поиска "новой физики"

Oleynichenko et al Phys Rev A **105**, 022825 (2022)

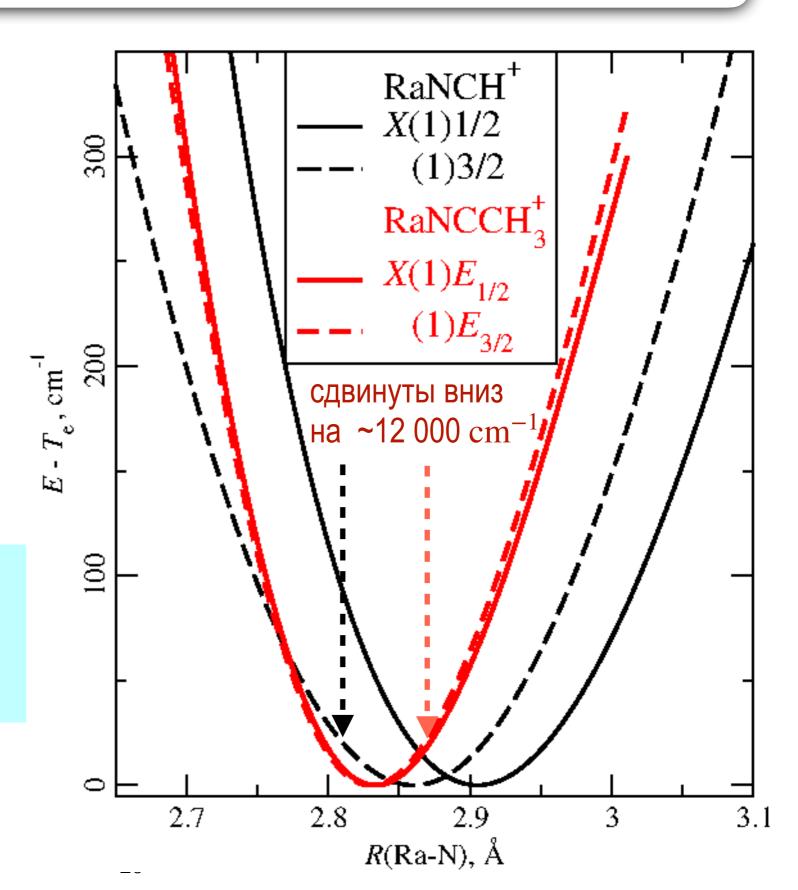
$$(1)3/2 \rightarrow X(1)1/2$$
 $(v'_1v'_2v'_3) \rightarrow (v''_1v''_2v''_3)$  Вероятность
 $(0\ 0\ 0) \rightarrow (0\ 0\ 0)$  0.8892
 $(0\ 0\ 0) \rightarrow (1\ 0\ 0)$  0.1058
 $(0\ 0\ 0) \rightarrow (2\ 0\ 0)$  0.0049
$$\sum_{v''=0}^{2}$$
 0.9999

**RaOH** Isaev et al *J Phys B* 50 225101 (2017)

**RaCl** Isaev et al *JQSRT* **269** 107649 (2021)

**RaF** Zaitsevskii et al *J Chem Phys* **156** 044306 (2022)

## FS RCCSD - приложения: прогнозирование спектров и поиск квазизамкнутых оптических циклов для охлаждения


поиск лазерно-охлаждаемых заряженных комплексов **Ra**<sup>+</sup>-**N** 

RaNCH<sup>+</sup> RaNCCH<sub>3</sub><sup>+</sup>

в основном и 1-м возб. состояниях

симметричные равновесные конфигурации

потенциалы смещены охлаждение проблематично потенциалы симбатны можно охлаждать?



Isaev et al Chem Phys Lett **807** 140078 (2022)

#### FS RCC на 02.11.2023: резюме. перспективы

#### хорошо

- ✓ для **любых элементов**, включая актиниды и трансактиниды
- ✓ размерная согласованность
- √численные неустойчивости устранимы
- √ высокая точность с возможностью систематического повышения
- √ довольно сложные электронные конфигурации
- √информация о нескольких зарядовых состояний

#### худо

- дорого:

  ( $N^6$  CCSD,  $N^8$  CCSDT)

  низкая симметрия и

  комплексная

  арифметика с самого
  начала,
- -фиаско FS CCSD(T),скромные успехиFS CCSDT-1,2,3
- -не для всех электронных состояний
  (≤ 3 неспаренных электронов/дырок),
- -проблемы с вырождением состояний из разных секторов

#### HO

- пока не использованы резервы технологий приближенных разложений многомерных тензоров (ТТ)
- относительный успех квазиаддитивных схем
- выход вакуумные состояния с открытой оболочкой?
- "смешанные секторы" с минимальными потерями размерной согласованности ?

Eliav et al, in *Reference Module in Chemistry, Molecular Sciences and Chemical Engineering,* Elsevier, 2022

А Олейниченко

Э Элиав Л Скрипников

Н Мосягин Т Исаев

А Титов А Румянцев

при поддержке РНФ 20-13-00225 П

http://www.qchem.pnpi.spb.ru

спасибо за терпение и внимание!