
EXP-T
v 1.4.4

User manual

written by A. Oleynichenko and A. Zaitsevskii

June 14, 2020

1



]

Contents
1 Introduction 3

1.1 Electronic structure models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Features for high-performance calculations . . . . . . . . . . . . . . . . . . . . . 4
1.3 Program components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Citation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Installation from source code 5
2.1 Compiling EXP-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Compiling on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Compiling with CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Outdated version of CMake . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Cannot open source file mkl.h . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Running EXP-T 9
3.1 Precomputing spinors and molecular integrals: DIRAC step . . . . . . . . . . . 9
3.2 Coupled cluster: EXP-T step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Command-line arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Input files syntax and keywords 11

5 More on methods 19
5.1 Energy denominators shifts technique . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Running typical calculations 21
6.1 Ground state energy with CCSD: CO molecule . . . . . . . . . . . . . . . . . . . 21
6.2 Electronic states of the HgH2+ molecular ion. Energy denominators shifts technique 23
6.3 Finite-field transition dipole moments calculations: Rb atom . . . . . . . . . . . 24
6.4 «High-spin» CCSD for open shell systems . . . . . . . . . . . . . . . . . . . . . 27

7 Utility programs 30
7.1 heffman – manipulations with effective Hamiltonian matrices . . . . . . . . . . . 30

Appendix A Temporary files 32

Appendix B Symmetry and irreducible representations 34

References 38

2



1 Introduction
The EXP-T program package is designed for the high-precision modeling of molecular elec-

tronic structure using the relativistic Fock space coupled cluster method (FS-RCC). Features
and program components are listed in Sec. 1.1, 1.2 and 1.3.

The authors will be grateful for any comments or suggestions:
exp-t-program@googlegroups.com
https://groups.google.com/d/forum/exp-t-program

1.1 Electronic structure models

The EXP-T package does not include subroutines for solving the (Dirac-) Hartree-Fock
equations and subsequent four-index transformation, so molecular integrals have to be imported
from third party electronic structure packages. Currently EXP-T is interfaced to the DIRAC
program package [1], thus getting access to the wide variety of Hamiltonians and property
operators implemented therein.

Models available in EXP-T:

• single-point energy calculations with any point groups and (nearly) all Hamiltonians,
implemented in DIRAC (4c-DC, X2Cmmf, 2c-ECP, non-relativistic);

• ground state energy calculations: CCSD, CCSD(T), CCSDT-n (n=1,2,3), CCSDT mod-
els;

• the FS-CCSD method for excited states is implemented for the (0h1p), (1h0p), (1h1p),
(0h2p), (2h0p), (0h3p) Fock space sectors;

• FS-CC models for excited states accounting for triples (CCSDT-n (n=1,2,3), CCSDT)
are implemented for the (0h1p), (1h0p), (0h2p), (0h3p) Fock space sectors.
The summary of all electronic structure models implemented in the EXP-T program
system is given below:

FS sector CCSD CCSD+T(3) CCSDT-1 CCSDT-2 CCSDT-3 CCSDT
0h0p + + + + + +
0h1p + t t t t t
1h0p + t t t t t
1h1p + – – – – –
0h2p + t t t t t
2h0p + – – – – –
0h3p t t t t t t

“+” – implemented, “–” – not implemented, “t” – currently being tested

• “dynamic” energy denominators shifts as a solution of the intruder-state problem [2];

• Padé extrapolation to the zero-shift limit [3];

• finite-field transition moments calculations [4];

• quasidiabatization of SO-coupled states and SO extraction [2].
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1.2 Features for high-performance calculations

• OpenMP parallelization (for shared-memory systems);

• parallel calculations on NVIDIA GPUs using the CUDA platform [5].

1.3 Program components

expt.x Input processing + all CC calculations

heffman.x Manipulations with effective Hamiltonian matrices: Padé extrapolations, finite-
field transition moments calculations, quasidiabatization of SO-coupled states

1.4 Citation

We kindly ask you to acknowledge any use of the EXP-T program system that results in
published material using the following citation:

A. V. Oleynichenko, A. Zaitsevskii, E. Eliav, Towards High Performance Relativistic Elec-
tronic Structure Modelling: The EXP-T Program Package. arXiv:2004.03682 [physics.comp-ph]
(2020)

1.5 Credits

EXP-T is based on ideas and design solutions of the suite of FS-CC programs written by
Ephraim Eliav and Uzi Kaldor.
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2 Installation from source code

2.1 Compiling EXP-T

EXP-T is currently oriented at Unix-like operating systems.

Tools required for compiling the EXP-T package from source code:

• C and Fortran compilers. Currently supported compiler systems are

gcc/gfortran GNU compilers

icc/ifort Intel compilers

• cmake version 3.0.2 or higher and make utilities:
https://cmake.org/
https://www.gnu.org/software/make/

Optional dependencies:

• Implementation of the BLAS/LAPACK linear algebra libraries (OpenBLAS or Intel MKL
are recommended);

• Python 2 – for testing;

• NVIDIA drivers and CUDA Toolkit are required to perform parallel calculations on GPU:
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://developer.nvidia.com/cuda-toolkit

Download the EXP-T source code as a *.tar.xz file and unpack it:

tar xvf expt-X.Y.Z.tar.xz

Go to the EXP-T home directory, create the build directory and make it the current working
dir:

mkdir build
cd build

Compilation (Intel compilers):

CC=icc FC=ifort cmake ..
make

Compilation (GNU compilers):

CC=gcc FC=gfortran cmake ..
make
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We recommend specifying compilers explicitly (since the default C compiler may be something
other than gcc).

The CMake utility will try to locate BLAS/LAPACK libraries on your computer; in case
of multiple implementations found you will be asked to choose one of them. If there are no
pre-installed libraries on your machine, the internal OpenBLAS will be compiled and linked to
EXP-T.

When using Intel MKL together with GNU compilers, you will probably need to explicitly
specify the path to the MKL home directory by setting the environment variable MKLROOT. For
example:

export MKLROOT=/opt/intel/mkl

In case of successful compilation, the executable file expt.x will appear in the build direc-
tory.

We strongly recommend that compilation is followed by testing (see Sect 2.4).
Do not forget to add the directory containing the binaries to the PATH environment variable!

2.1.1 Compiling on Mac OS X

The default C compiler for Mac OS X is clang; this compiler was not tested, so we strongly
recommend to use gcc instead:

CC=gcc FC=gfortran cmake ..
make

In order to use a BLAS/LAPACK implementation other than the one attached to the EXP-T
package, you can use the following manual:
https://pheiter.wordpress.com/2012/09/04/howto-installing-lapack-and-blas-on-mac-os/
However, the Netlib implementation described there can perform several times slower than the
OpenBLAS implementation included in EXP-T.

2.2 Compiling with CUDA
Compilation of EXP-T does not require the user to have a CUDA-compatible GPU device. If the CUDA
toolkit is missing, the CUDA code will simply be excluded from the compilation process.

EXP-T is adapted for parallel calculations on NVIDIA GPUs (the CUDA technology [5]).
Notes:

1. At the moment, the OpenMP+CUDA hybrid model as well as multi-GPU support is not imple-
mented. Only one GPU can be used for calculations.

2. non-professional GPUs for gaming are not suitable for CUDA calculations (except for Kepler cards).

3. CUDA code in EXP-T was tested only for CUDA 9.1 and 10.0.

4. Only Intel and GNU compilers were tested for compatibility with CUDA.

To compile EXP-T with CUDA:

1. Make sure your graphics card supports CUDA. CUDA-compatible GPUs are listed here:
https://developer.nvidia.com/cuda-gpus
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2. Install proprietary NVIDIA drivers (not the nouveau driver!).
https://www.nvidia.com/Download/index.aspx?lang=en-us.
For Linux you can find drivers in your distribution’s repository.

3. Install CUDA toolkit
https://developer.nvidia.com/cuda-downloads
or from distribution’s repository.

4. Make sure that all drivers and CUDA toolkit are installed and work correctly. Compile the test suite
in the samples directory of the CUDA home directory and run some of them. The most important
are the tests employing the CUBLAS linear algebra library.

5. Compile EXP-T as described in Sec. 2.1. All CUDA tools will be located automatically by CMake.

6. Make sure that the results produced by EXP-T do not depend on the use of CUDA.

2.3 Troubleshooting

This section describes the most common problems which can occur during the compilation
process. In case of any questions or problems, please don’t hesitate to contact us. Don’t forget
to attach the output file (in case of problems with calculations) or the file with the output of
the make VERBOSE=1 command (in case of problems with compilation).

Google Groups:
https://groups.google.com/d/forum/exp-t-program

E-mail:
exp-t-program@googlegroups.com

2.3.1 Outdated version of CMake
We highly recommend using CMake version 3.0.2 or higher, otherwise, problems may occur when

building the internal OpenBLAS. The following command will show what version of CMake is installed:

cmake --version

If CMake version is lower than 3.0.2, download the binary distribution from their official website https:
//cmake.org/download/. After installation do not forget to add the directory containing the CMake
binary files to the PATH environment variable.

Installation of CMake binary files does not require root privileges.

2.3.2 Cannot open source file mkl.h

When using Intel MKL as a linear algebra library the following error can occur:

<path>/include/compat.h(17): catastrophic error: cannot open source file "mkl.h"
#include "mkl.h"

^

compilation aborted for <path>/src/main.c (code 4)

This means that CMake failed to locate directories containing the MKL header file (however, MKL
object files were located). The problem almost always occurs when trying to use the Intel MKL library
together with GNU compilers. First of all, check the output of the cmake command. You should see
something like:
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-- Found BLAS: /opt/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/intel64_lin/
libmkl_gf_lp64.so;/opt/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/intel64_lin/
libmkl_gnu_thread.so;/opt/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/
intel64_lin/libmkl_core.so;/usr/lib/libgomp.so;-lpthread;-lm;-ldl
-- BLAS linker flags =
-- BLAS_LIBRARIES = /opt/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/intel64_lin/
libmkl_gf_lp64.so/opt/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/intel64_lin/
libmkl_gnu_thread.so/opt/intel/compilers_and_libraries_2019.3.199/linux/mkl/lib/intel64_lin/
libmkl_core.so/usr/lib/libgomp.so-lpthread-lm-ldl
-- MKL_INCLUDE_DIR = MKL_INCLUDE_DIR-NOTFOUND
-- BLAS_LIBRARY macros option: -DBLAS_Intel10_64lp

Note the line with MKL_INCLUDE_DIR-NOTFOUND. We must help CMake locate the MKL include directory
by setting up the MKLROOT environment variable. For example:

export MKLROOT=/opt/intel/mkl

Or use the mklvars script from the Intel MKL distribution (see also https://software.intel.com/
en-us/mkl-linux-developer-guide-scripts-to-set-environment-variables).

2.4 Testing

Test suite is located in the test directory. The testing system is written in the Python 2
programming language (must be pre-installed on your machine). Note that Python version 3
is not backward compatible with Python 2.

In order to run the testing suite, change the working directory to test and run the test.py
script:

cd test
python test.py

It is also possible to run an abbridged version of the testing suite, that includes only the
most important tests. In that case specify the additional argument quick:

python test.py quick
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3 Running EXP-T
See Sec. 7 for a description of an additional utitily programs included in the EXP-T package.

A typical calculation consists of two sequential steps: (1) SCF and integral transformation
within DIRAC and (2) CC calculation within EXP-T.

3.1 Precomputing spinors and molecular integrals: DIRAC step

The interface to DIRAC was tested only for the DIRAC17 and DIRAC18 releases.
DIRAC stores transformed molecular integrals in the following binary files:

MRCONEE information about SCF calculation, symmetry, occupation numbers, one-electron
integrals;

MDCINT symmetry-unique nonzero two-electron integrals only;

MDPROP one-electron property integrals.

Run DIRAC and save the files containing the transformed integrals to the working directory
using the –-get option:

pam --noarch --mol=<mol-file> --inp=<inp-file> --get="MRCONEE MDCINT MDPROP"

If DIRAC starts in parallel mode (MPI), it is necessary to choose the transformation algo-
rithm “scheme 4”. By default, DIRAC uses the “scheme 6” algorithm which produces multiple
MDCINT files [6] and currently EXP-T requires that all integrals are stored in a single file. In
order to accomplish this, add the following lines to the DIRAC input file:
**MOLTRA
.SCHEME
4

To calculate approximate transition moments and intensities without resorting to the finite-
field scheme transformed dipole moment integrals are required. We recommend explicitly ask
DIRAC to calculate and transform these integrals by adding the .PRPTRA and .DIPOLE keywords
to DIRAC input files:
**MOLTRA
.PRPTRA
. . . . . . .
**PROPERTIES
.DIPOLE

3.2 Coupled cluster: EXP-T step

Run an EXP-T job using the following command:
expt.x [options] <input-file>

The EXP-T output (including error messages) is flushed to the UNIX standard output
(stdout). Use the output redirection operator “>” in case of long time calculations:

nohup expt.x <input-file> > <output-file> &

Examples of DIRAC and EXP-T input files are given in Sec. 6.
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3.3 Command-line arguments

Use the expt.x –-help command to print a list of available command-line arguments:

Usage: expt.x [OPTION...] <input-file>
expt -- A Fock-Space Multireference Relativistic Coupled-Cluster Program

-n, --no-clean Do not clean scratch directory on exit
(use this option to keep cluster amplitudes etc)

-s, --scratch=PATH Path to scratch directory (default: ./scratch)
-?, --help Give this help list and exit

--usage Give a short usage message and exit
-V, --version Print program version and exit

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

Please report bugs to <exp-t-program@googlegroups.com>.
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4 Input files syntax and keywords
See Sec. 7 for the description of additional utitily programs included in the EXP-T package.

The input file format may change in future versions.

The EXP-T input file contains a list of instructions. Each instruction is placed on a separate
line and consists of a keyword and a list of arguments. Single-line comments start with ’#’
and continue until the end of the line. Input is case insensitive. Examples of EXP-T input files
are given in Sec. 6. Molecular geometry, basis set etc have to be described only once in the
DIRAC .mol-files at the molecular integrals calculation stage (not in EXP-T input files).

The detailed description of the keywords used in the EXP-T input file is provided below.
For convenience, keywords are grouped into several sections.

General

title optional comment.

Syntax: title <quoted-string>

Default: no title

Example: title "my first ccsd calculation"

print print level.

Syntax: print ( low || medium || high || debug )

Default: print high

degen_thresh energy levels are considered as degenerate if the energy gap between them is
lower than degen_thresh.

Syntax: degen_thresh <real thresh>

Units: atomic

Default: 1e-8

Model

sector specifies the target Fock space sector. To the moment the 0h0p, 0h1p, 1h0p, 1h1p,
0h2p, 2h0p, 0h3p FS sectors are implemented (h – holes, p – particles).

Syntax: sector <integer H>h<integer P>p

Default: sector 0h0p (vacuum)

model CC model (approximation to the cluster operator).

Syntax: model ( ccs || ccd || ccsd || ccsd(t) || ccsd+t(3) || ccsdt-1
|| ccsdt-2 || ccsdt-3 || ccsdt )

Default: model ccsd

Notes:
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• Keywords ccsd(t) and ccsd+t(3) are equivalent.

• The codes implementing the CCSD+T(3), CCSDT-n and CCSDT models in
the non-trivial sectors and all CC models in the 0h3p sector are experimental
(currently being tested), to be used with care.

• The current implementation of the CCSD(T) model for the 0h0p sector is not
very computationally efficient.

• The CCS and CCD models are implemented simply by setting all T2 (CCS)
or T1 (CCD) amplitudes to zero, this does not make computation faster, and
exists primarily for the purposes of testing and debugging.

occ spinor occupation numbers. This keyword can be used to setup calculations with
a “high-spin” vacuum state [7]. This keyword is alternative to the occ_irreps
keyword (see below).

Syntax: occ <list of the 0 and 1 digits separated by spaces>

Default: occupation numbers are read from MO integrals files

Example: 5 electrons and 10 spinors:
occ 1 1 0 0 0 1 1 1 0 0

CC calculations with high-spin vacuum states were tested for the 0h0p FS sector
only.

occ_irreps overall number of electrons in each irrep. Overall irrep occupations are ignored
if occupation numbers of individual spinors are given (by the occ keyword, see
above).

Syntax: occ_irreps <list of integers>

Default: occupation numbers are read from MO integrals files

Active space

nacth/nactp active (i.e. valence) space specification (by the overall number of active spinors,
regardless of their symmetry). This method of configuring the active space is
recommended.

• nacth – number of highest occupied spinors (active holes)

• nactp – number of lowest virtual spinors (active particles)

It is convenient to setup the active space by the nacth/nactp keywords when
exploring electronic states of molecules in a range of geometries (potential energy
surfaces, transition moment functions etc).

Syntax: nacth <integer dim>

nactp <integer dim>

Default: nacth 0, nactp 0 (no active spinors).

or:
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active active (i.e. valence) space specification (by energy range). Active spinors must have
one-electron energies in the range εi ∈ [εmin; εmax] (regardless of their symmetry).
Setting the active space using the active keyword is convenient only for atomic
calculations.

Syntax: active energy <real eps_min> <real eps_max>

Default: no active spinors

Example: active energy -1.0 5.0

Properties

nohermit do not perform symmetric orthogonalization of model vectors. Orthogonalized
model vectors are used only to calculate properties and approximate density ma-
trices; matrices of effective Hamiltonians flushed to the HEFF files (see Sec. 7.1)
remain non-Hermitian.

Syntax: nohermit

Default: “hermitization” is enabled

dltdm enable calculations of the model-space approximations to transition dipole moments
(wavefunctions are represented by model vectors) [8, 9]).

Note that left model vectors are used in bra:

dif,η = 〈ψ̃⊥⊥i |dη|ψ̃f〉 η = x, y, z

and if “hermitization” of the effective Hamiltonian matrix is disabled, the TDM
matrix will be (normally slightly) non-Hermitian (|dif | 6= |dfi|).
This approach typically overestimates transition moments by 30-50%, hence we
recommend using it only for semiquantitative estimations, e.g. detection of the
most intensive transitions and discerning between 0+ and 0− states (transitions are
strictly forbidden).

Syntax: dltdm

Default: disabled.

The code for transition moments is currently experimental; please, we kindly ask
you to report all failures and obviously incorrect results.

Iterative solution and convergence

nroots specifies the number of roots (electronic states) of interest in each irrep (in the
target Fock space sector). Model vectors analysis will be performed only for the
nroots lowest states.

Syntax: nroots <list-of-integers>

Default: all roots are of interest.

Example: consider the electronic states of the RbCs molecule, corresponding to the
first three dissociation limits (see, for example, [2] and references therein). In the
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Hund’s case a these electronic states are X1Σ+, a3Σ+, b3Π, A1Σ+, c3Σ+, B1Π. In
the Hund’s case c these states are classified according the projection of the total
electronic angular momentum and can be rearranged as follows: (1-3)0+, (1-3)0−,
(1-4)1,(1)2 states. The order of irreps assumed in EXP-T is described in Appendix
B (the point group of RbCs is C∞v). All output and analysis of model vectors will
be restricted to these 11 states using the following command:
nroots 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 4 4 1 1
(32 zeros; note that as in DIRAC 0+ and 0− states belong to the same irrep).

maxiter maximum number of iterations allowed to solve the CC equations.

Syntax: maxiter <integer max>

Default: maxiter 50.

conv specifies requested convergence threshold (in amplitudes):∣∣∣|t(n+1)
K | − |t(n)K |

∣∣∣ < conv ∀K → converged

Syntax: conv <real thresh>

Default: 1e-9.

diis enables the DIIS extrapolation technique [10, 11].

Syntax: diis [ ( off || <integer dim> ) ]

Disable DIIS: diis off

Default: diis 10 (DIIS enabled)

damping enable damping in the given FS sector. Amplitudes obtained at the n-th step will
be mixed with amplitudes from the (n− 1)-th step using the damping factor α:

T (n)′ = αT (n−1) + (1− α)T (n)

Damping can aid the convergence of equations in some non-pathological cases (when
the lack of convergence is caused by amplitude oscillations rather than intruder
states). Note that in other cases damping can significantly slow down convergence.

Syntax: damping <H>h<P>p <integer last_step> <real factor>

<H>h<P>p FS sector in which these damping parameters will be applied

last_step at which iteration damping will be disabled

factor damping factor α.

Default: disabled in all sectors

Example: damping 0h2p 100 0.5

14



shifttype indicates which formula for denominator shifts should be used. [2, 3]. See Sec. 5.1
for details.

shifttype is the same for all FS sectors. If shifttype is not equal to none, you
must specify the shift parameters for each FS sector except for 0h0p (see keyword
shift).

Syntax: shifttype ( none || real || taylor )

Possible values:

none no shift
real real shift

D
′

K = DK + S

(
S

DK + S

)n

(1)

taylor extrapolated intermediate Hamiltonian-like shift [12]

D
′

K = (DK + S)

(
1− S

DK+S

)
1−

(
S

DK+S

)n+1 (2)

Default: shifttype none

Shift is never applied in the 0h0p sector!

orbshift indicates the use of sector-universal shifts. For given “orbital” shift s and cluster
amplitude tK the resulting shift S is defined as

S = nv(tK)× s/2,

where nv(tK) is the number of valence indices of tK . Thus, it is enough to set only
one parameter, s, for all sectors and cluster operators of arbitrary excitation rank.
You can also set the attenuation parameter n, see eqs. (1) and (2).

Syntax: orbshift [<integer power default 3>] <real shift s>.

Notes:

• The shift directive disables orbital shifts.
• The shifttype directive is required.

Example:

shifttype real
orbshift 3 -0.3 # power == 3, s = -0.3
# shifts for T2 amplitudes will be:
# 1 valence index: S = s/2 = -0.15
# 2 valence indices: S = s = -0.3
# 3 valence indices: S = 3*s/2 = -0.45

shift <H>h<P>p sets the denominator shift parameters in the (H,P) FS sector.

shift <H>h<P>p <int n> <real shift_S1> <real shift_S2> [<real shift_S3>]
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n attenuation parameter (see eqs. (1) and (2));

shift_S1 shift value for the S(H,P )
1 cluster operator (singles). Must be omitted

in the (2,0) and (0,2) FS sectors;

shift_S2 shift value for S(H,P )
2 (doubles);

shift_S3 shift value for S(H,P )
3 (triples). Must be used only for CC models

including non-perturbative triples.

Default: n = 3, all shifts = 0.0

Examples:
shift 0h1p 3 -0.3 -0.6 -0.9
shift 0h1p 3 -0.6
shift 1h1p 4 0.0 -0.5

reuse indicates that sorted integrals and cluster amplitudes from the previous calculation
should be reused. Cluster amplitudes will be used as an initial guess. If EXP-T
fails to locate the files containing amplitudes, they will be recalculated.

Syntax: reuse <list-of-arguments>

Possible values of arguments:

integrals load one- and two-electron integrals (from scratch directory);

1-integrals one-electron integrals only;

2-integrals two-electron integrals only;

amplitudes load amplitudes for all FS sectors occuring in the calculation;

0h0p, 0h1p, 1h0p, 1h1p, 0h2p, 2h0p

load amplitudes for the given sector only

Default: no reuse

Note: files with converged amplitudes are flushed to the scratch directory after each
calculation (see also Appendix A). To prevent the deletion of files with amplitudes
or integrals it is necessary to use the –-no-clean command-line option.

Example: reuse integrals 0h0p 0h1p

Interfaces

integrals sets paths to files containing transformed molecular integrals.

Syntax: integrals <string "1-el int-s"> <string "2-el int-s"> [<string
"properties int-s">]

Arguments:

• one-electron integrals file;

• two-electron integrals file;
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• properties transformed integrals file.

Default: integrals MRCONEE MDCINT MDPROP

Example: integrals ../MRCONEE-Cinfv ../MDCINT-Cinfv /home/user/MDPROP

Memory management

memory specifies the amount of memory that EXP-T can use for the job (just for dynamically
allocated memory).

Syntax: memory <real size> ( mb || gb )

Min value: 10 Mb

Default: memory 1024 mb (1 Gb)

tilesize the whole set of one-electron functions (spinors or spin-orbitals) is divided into
blocks: (1) by irrep; (2) then into sub-blocks with size not exceeding tilesize
(actually the same as “tiles” in NWChem-TCE):

The N -dimensional arrays of integrals and amplitudes (tensors) also turn out to be
divided into blocks containing ∼ (tilesize)N elements:

tilesize must be large enough to place at least one N -dimensional array of size
(tilesize)N in RAM. We recommend using as large tilesize as possible, otherwise
memory management overheads can become enormous. However, it may be use-
ful to decrease the tilesize parameter in cases of insufficient RAM or threaded
execution (sufficient granularity of arrays leads to better dynamic load balancing
among OpenMP threads).

Syntax: tilesize <integer size>

Default: tilesize 100

disk_usage indicates which data should be stored on the disk. Note that very intensive disk
usage will slow down calculations; however, disk usage is unavoidable in case of
large tasks.

Syntax: disk_usage <integer mode>

Possible values of <mode>:
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0 all data is stored in RAM;

1 tensors of rank ≥ 6 are stored on disk (T3 amplitudes etc);

2 tensors of rank ≥ 6 and 〈pp||pp〉 (4 particles) two-electron integrals are
stored on disk;

3 tensors of rank ≥ 6, 〈pp||pp〉 and 〈∗p||pp〉 (3 particles) two-electron integrals
are stored on disk;

4 the same as 3, + compression of all data. Is suitable for extremely large
tasks only.

Default: 2 – 〈pp||pp〉 and tensors of rank ≥ 6 are stored on disk.

compress enables compression of all data written to disk. The LZ4 algorithm [13] is employed
(the fastest decompression to the date). Compression can slow down calculations
slightly (depends on disk), but the disk space used can be reduced dramatically
(up to 3 times).

Syntax: compress

Default: disabled (except for disk_usage=4)

Parallel execution

nthreads number of OpenMP threads. Note that scaling with respect to number of threads
is much better for large tasks (400+ spinors).

Syntax: nthreads <integer n_omp_threads>

Default: nthreads 1 (sequential execution).

At the moment parallelization is not used at the integral sorting stage, hence OpenMP
can accelerate only the amplitude equations solution stage.

cuda enables parallel calculations on NVIDIA GPU (only a single GPU is supported at
the moment). Requires nthreads 1 (the OpenMP+CUDA hybrid model is not
implemented yet).

Syntax: cuda

Default: CUDA disabled.
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5 More on methods

5.1 Energy denominators shifts technique

The equations for the cluster amplitudes tK are normally written in the form [14, 15, 16, 2, 3]

tK =
1

DK

(
V Ω− Ω

(
V Ω

)
Cl

)
K
, V = H −H0, (3)

here H is the total Hamiltonian, H0 is the Hartree–Fock one-body operator for the Fermi vac-
uum state, the subscript Cl and the overbar mark, respectively, the closed part and connected
part of an operator, and K specifies the excitation from the model space to the outer space.
The entities DK (energy denominators) are the negatives of the differences of H0 eigenvalues
associated with the excitations K. The factors 1/DK = 1/DK(R), where R stands for the nu-
clear geometry, have poles at DK(R) = 0, so that the stability of the solutions of Eq. (3) near
geometries where one of the energy denominators passes through zero is necessarily destroyed.

The instabilities can be avoided via modifying the energy denominators in a way that weakly
affects the amplitudes which are believed to be of importance for describing the low-lying states.
Several modifications are currently used. These modifications are defined by sector / K range
dependent shift amplitudes SK and an universal integer attenuation parameter n (n ≥ 0).

• The denominator modification originally proposed in Ref. [12] in the frames of the Ex-
trapolated Intermediate Hamiltonian (XIH) theory is given by

Dk −→ DT
k (n) = (DK + SK)

1− SK
DK + SK

1−
(

SK
DK + SK

)n+1 (4)

Choosing a negative and large enough value of the shift amplitudes SK (SK + DK � 0
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D

K
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-1

0

1
/D

KT
(n

)

1/D
K

n=0
n=1
n=2
n=3
n=4

Figure 1: The factor 1/DT
K, Eq. (4), SK = −0.5, as the function of unshifted denominator

DK. The solid black curve corresponds to the case of unshifted denominator.

for all K) and moderate n values, one can always remove the instabilities; however, the
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increase of n causes a very rapid convergence of the modified factor 1/DT
K(n) to the

original ill-defined one.

Keyword in EXP-T: shifttype taylor

• Up to now, most FS RCC calculations were performed using the real denominator shift

DK −→ DRe
K (n) = DK + SK

(
SK

DK + SK

)n

(5)

(Ref. [2, 3, 17]). As for the Taylor type shift (4), one should choose SK so that SK+DK < 0
for all K. The consequences of increasing n are less dramatic than when using the
modification according Eq. (4), see Fig. 2. An exception takes place for n = 0 where both
Eq. (4) and Eq. (5) reduce to the same expression with a constant shift.

Keyword in EXP-T: shifttype real

-4 -3 -2 -1 0
D

K
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1
/D

KR
e
(n

)

Figure 2: The factor 1/DRe
K , Eq. (5), SK = −0.5, as the function of the unshifted denominator

DK. The value of n is shown using the same colors as in Fig. 1 (n increases along the rainbow
color sequence from red to violet from 0 to 4, respectively)
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6 Running typical calculations
The input and output files discussed in this section can be found in the examples directory

of the EXP-T distro.

6.1 Ground state energy with CCSD: CO molecule

For input/output files see examples/CO_ccsd

Consider the calculation of the CCSD correlation energy of the CO molecule in the cc-pVDZ
[18] basis set.

DIRAC input files:
(CO.mol)

DIRAC
CO molecule, R = 2.132 bohrs
symmetry C1
C 2 0

6. 1
C 0.0 0.0 0.0
LARGE BASIS cc-pVDZ

8. 1
O 0.0 0.0 2.132
LARGE BASIS cc-pVDZ
FINISH

(TRA.inp)

**DIRAC
.TITLE
CO molecule
.WAVE FUNCTION
.4INDEX
**WAVE FUNCTION
.SCF
*SCF
.CLOSED
14
.ERGCNV
1E-12
**MOLTRA
.ACTIVE
all
*END OF INPUT

We run DIRAC with the following command:

pam --inp=TRA --mol=CO --get="MRCONEE MDCINT"
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Note that the –-get option is used so that pam exports the transformed molecular integrals
(stored in the MRCONEE and MDCINT files) from DIRAC’s scratch directory to the working direc-
tory.

In some cases, it can be convenient to rename the files containing the integrals (this is not
mandatory):

mv MRCONEE MRCONEE-C1
mv MDCINT MDCINT-C1

Now the EXP-T input file input-C1 is set up:

# CO molecule, CCSD/cc-pVDZ
# nonrelativistic, symmetry C1

# task title (of type "string")
title "CO/CCSD/cc-pVDZ"

# print level, default medium
print medium

# max number of iterations
maxiter 30

# convergence threshold (by cluster amplitudes)
conv 1e-9

# target Fock space sector
sector 0h0p

# CC model: ccsd, ccsdt-1, etc
model ccsd

# import integrals from
integrals MRCONEE-C1 MDCINT-C1

To run EXP-T, enter:

expt.x input-C1

The string with the correlation energy can be found at the end of the output. Note that by
default EXP-T flushes all output simply to stdout.

SCF reference energy = -135.334550611025
CCSD correlation energy = -0.298117800684

Total CCSD energy = -135.632668411709
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6.2 Electronic states of the HgH2+ molecular ion. Energy denomina-
tors shifts technique

For input/output files see examples/HgH2+_shifts

In almost every problem involving the exploration of potential energy surfaces using the FS-
CC method in a fairly wide range of internuclear distances, the intruder state problem arises.
The presence of intruder states usually manifests itself as (but does not not simply arise from!)
the appearance of small energy denominators in amplitude equations (see Sec. 5.1 for details);
the presence of small denominators makes the iterative procedure unstable. A straightforward
solution of the intruder-state problem can be obtained by modifying (shifting) all energy de-
nominators in the problematic Fock space sector(s) in such a way that the shifts are significant
for ill-defined (nearly zero or positive) energy denominators and remain negligibly small for
large negative denominators [2, 3]. Note, however, that this does not imply any modification of
the right-hand side of the amplitude equations and, thus, introduces an additional (although
controllable) approximation.

The denominator shift technique is implemented in EXP-T; different formulas are available
(see Sec. 4, keyword shifttype). The example discussed below employs the simplest real
shifts.

Consider the HgH2+ molecular ion at R = 2.0 bohr. The FS-CC equations cannot be solved
at all without using denominator shifts. Let the active space be comprised of the 8 lowest
virtual spinors. The EXP-T input file will look like this:

# Test:
# (1) HgH2+ ion, FSCC scheme: HgH3+ -> HgH2+
# (2) hamiltionian: 2-comp gatchina ECP
# (3) symmetry Cinfv
# (4) sector (0h,1p)

title "Test HgH3+ -> HgH2+/gatchina ECP/Cinfv"
maxiter 200
conv 1e-9
active -10 -0.5
sector 0h1p

# import integrals from:
integrals MRCONEE-Cinfv MDCINT-Cinfv

# shifts of denominators:

# real shift:
shifttype real

# shift parameters:
# 1. <n> -- compensation power (here: 3)
# 3. <S1> -- shift for all S1 amplitudes (here: -0.5)
# 3. <S2> -- shift for all S2 amplitudes (here: -1.0)
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shift 0h1p 3 -0.5 -1.0

Approaches to the selection of shift parameters are discussed in [2, 3]. You can also perform
Pade extrapolation of the series of effective Hamiltonian matrices to the zero shift limit in order
to minimize distortions introduced by the shift [3] (see also Sec. 7.1).

6.3 Finite-field transition dipole moments calculations: Rb atom

For input/output files see examples/Rb_atom_TDMs

See [9, 19, 4] for detailed discussions on the finite field technique (FF) for transition dipole
moments. The algorithm for any FF calculation is as follows:

• solve the HF problem for the non-perturbed Hamiltonian (no external fields);

• transform the molecular integrals to the basis of “non-perturbed” one-electron functions;

• perform two FS-CC calculations with these integrals at external fields strengths +F and
−F ;

• estimate TDMs are estimated using the finite-difference-type formula:

dFFη,if = (Ei − Ef ) lim
Fη→0

F
η
′=0,η

′ 6=η

〈ψ̃⊥⊥i (−Fη)|ψ̃f (+Fη)〉
2Fη

(η = x, y, z), (6)

where ψ̃i and ψ̃f are model vectors corresponding to initial and f inal electronic states,
respectively.

Consider the FF calculation of TDMs for the 2S1/2 ↔ 2P o
1/2 and 2S1/2 ↔ 2P o

3/2 transitions
in the Rb atom. The basis set and effective core potential employed were taken from [19]; basis
set was reduced to [7s7p5d3f2g]. The simplest active space required to describe 2S1/2, 2P o

1/2

and 2P o
3/2 states of Rb is comprised of 5s- and 5p-spinors (overall 8 spinors, or 4 Kramers pairs).

Firstly, we perform the HF calculation and export the spinors to the DFCOEF unformatted
file:

pam --noarch --inp=Rb_HF.inp --mol=Rb.mol --outcmo

Note that the .OPERATOR/ZDIPLEN specification is required in the Rb_HF.inp input file:

.OPERATOR
ZDIPLEN
COMFACTOR
0.00000

These lines are used to ask DIRAC to calculate and transform dipole moment integrals (these
integrals are used later to construct the perturbation due to the external field).

Now we proceed to the integral transformation step. We create two DIRAC input files that
differ only in the external electric field strength value. For example:
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! Four-index transformation
! Rb atom
**GENERAL
.PCMOUT
**DIRAC
.TITLE
Rb+ ion -- 4index transformation; Fz = +0.00001 (Field PLUS)
.WAVE F
.4INDEX
**HAMILTONIAN
.ECP
.OPERATOR
ZDIPLEN
COMFACTOR
0.00001
**WAVE FUNCTION
*SCF
.CLOSED SHELL
8
**MOLTRA
.SCHEME
4
.ACTIVE
energy -100.0 20.0 0.5
*END OF DIRAC

Note that the external uniform electric field lowers spherical symmetry of the atom to C∞v.
Running integral transformation:

pam --noarch --inp=Rb_TRA_F+ --mol=Rb --get="MRCONEE MDCINT" --incmo
cp MRCONEE MRCONEE-Cinfv_F+
cp MDCINT MDCINT-Cinfv_F+
pam --noarch --inp=Rb_TRA_F- --mol=Rb --get="MRCONEE MDCINT" --incmo
cp MRCONEE MRCONEE-Cinfv_F-
cp MDCINT MDCINT-Cinfv_F-

Integrals are saved to the MRCONEE and MDCINT unformatted files. At this step DIRAC adds
external field F contribution to the Fock operator:

f
′

pq = fpq + (dx)pqFx + (dy)pqFy + (dz)pqFz

Now we are ready to run FSCC calculations in EXP-T. Input file (for field strength +F ):

# title for the task (of type "string")
title "Rb atom -- relativistic EA-CCSD calculation"

# max number of iterations
maxiter 50
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# convergence threshold (by cluster amplitudes)
conv 1e-9

# target Fock space sector
sector 0h1p

# active space specification: 8 lowest virtual spinors (5s,5p1/2,5p3/2)
nactp 8

# import integrals from
integrals MRCONEE-Cinfv_F+ MDCINT-Cinfv_F+

(and a similar input file for integrals calculated at field strength −F , MRCONEE-Cinfv_F- and
MDCINT-Cinfv_F-).

Run EXP-T and save formatted files HEFF with effective Hamiltonian matrices to the work-
ing directory:

expt.x --no-clean input-Cinfv_F- | tee input-Cinfv_Field-.out
cp scratch/HEFF HEFF1
rm scratch/HEFF
expt.x --no-clean input-Cinfv_F+ | tee input-Cinfv_Field+.out
cp scratch/HEFF HEFF2

The electronic spectrum is given at the end of the EXP-T output file. Corresponding lines
begin with the @ symbol:

Level Re(eigenvalue) . . .Rel eigv, cm-1 deg symmetry
---------------------- . . .------------------------------
@ 1 -0.1531234146 . . . 0.000000 2 1/2+ 1/2-
@ 2 -0.0959179975 . . . 12555.137832 2 1/2+ 1/2-
@ 3 -0.0948635671 . . . 12786.558570 2 1/2+ 1/2-
@ 4 -0.0948635506 . . . 12786.562182 2 3/2+ 3/2-

(compare with experimental values 12578.950 cm−1 and 12816.545 cm−1 [20]; note that the
2P o

3/2 state is split in the external electric field).
Finally, we turn to the calculation of transition moments. The input file for the heffman.x

utility is as follows (see Sec. 7.1 for details and explanation):

file: HEFF1
file: HEFF2
sector: 0h1p
rep: 1
step: 0.00002
print: 1

Run heffman.x:

heffman.x < heffman.inp | tee heffman.out
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Transition moments and Einstein coefficients:

transition energy, cm^-1 Re(d) . . . |d| osc str A,10^6 s-1
. . .
1 -> 2 12555.138 1.620961 . . . 1.620961 0.100205 10.536015
1 -> 3 12786.559 2.274254 . . . 2.274254 0.200889 21.908153
2 -> 3 231.421 -0.000012 . . . 0.000012 0.000000 0.000000

Note: this is only the |dz| component of the full transition moment d. It should be mentioned
that the small, but non-zero value of |d| in the last line is an artifact of the FF approach.

Taking into account the degeneracy of the 2P o
3/2 state and the spherical symmetry of the

Rb atom, the full transition moments |d| and full Einstein coefficients can be calculated:

A(2S1/2 ← 2P o
1/2) = 31.6 s−1

A(2S1/2 ← 2P o
3/2) = 32.9 s−1

(compare with experimental values 34.0 s−1 and 37.0 s−1 [20]).
Results can be improved significantly by extending the basis set and active space [19].
In order to reduce computational time, it is recommended to use the –-no-clean and reuse

options to start calculations for +F with already sorted two-electron integrals and converged
cluster amplitudes.

6.4 «High-spin» CCSD for open shell systems

For input/output files see examples/O2_highspin

The example considered in this subsection is borrowed from the DIRAC program manual
[7]. Let us calculate the energy of the ground (triplet) state of the O2 molecule.

The DIRAC input file contains directives for the HF calculation and subsequent integrals
transformation:

(O2.mol)

test of open-shell CCSD calculation
molecular oxygen at eq distance taken from NIST
automatic symmetry detection: DIRAC will identify the Dinfh group
C 1 A

8. 2
O 0.0 0.0 0.60376
O 0.0 0.0 -0.60376
LARGE BASIS cc-pVDZ
FINISH

(TRA.inp)

!
! calculation of the triplet ground state of molecular oxygen
! (Dirac-Coulomb Hamiltonian)
**DIRAC
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.TITLE
molecular oxygen -- ground state
.WAVE F
.4INDEX
**WAVE FUNCTIONS
.SCF
*SCF
.CLOSED SHELL
6 8
.OPEN SHELL
1
2/4,0
*END OF

DIRAC writes spinor occupation numbers to the MRCONEE unformatted file, but only spinors
belonging to closed shell (the .CLOSED_SHELL keyword) are labeled as occupied. This is why
EXP-T will calculate the energy for the O2+

2 cation without manually specified occupation
numbers.

EXP-T provides two ways to set the occupation numbers of spinors:

• by setting the number of occupied spinors in each irrep (the occ_irreps keyword). For
the example under consideration:

occ_irreps 3 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 1

Note that the 1s-orbitals of oxygen atoms are frozen here, and the corresponding electrons
should not be accounted for in the occ_irreps string. In order to set the number of
electrons in each irrep correctly, we recommend starting with a calculation for default
occupation numbers and finding strings with an irrep order in the output:

0 1/2g+
1 1/2g-
2 3/2g+
3 3/2g-
4 5/2g+
5 5/2g-
...

16 1/2u+
17 1/2u-
18 3/2u+
19 3/2u-
20 5/2u+
21 5/2u-

...

For the example discussed:

– 3 electrons occupy the lowest spinors belonging to the 1/2g+ irrep;
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– 1/2g-, 1/2u+, 1/2u-: 2 electrons in each irrep;

– 3/2g-, 3/2u+, 3/2u-: 1 electron in each irrep.

• you can also specify the occupation number for each spinor explicitly:

occ 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 ...

To identify spinors which should be populated in the electronic state under consideration,
we again recommend starting the calculation with the default occupation numbers, then
interrupting the task, finding information about spinors and restarting the calculation
with the correct occupation numbers.

Note that, in fact, non-canonical orbitals are used, therefore the Fock matrix is not diagonal
and the vacuum determinant energy 〈Φ0|H|Φ0〉 is not equal to the SCF energy value obtained
before:

total SCF energy -149.686661451845
...
sorting one-electron integrals ...
Fock matrix construction ...
SCF energy (energy of reference determinant) was updated:
old energy = -149.686661451845 a.u.
new energy = -149.718144633814 a.u.

...
SCF reference energy = -149.718144633814

CCSD correlation energy = -0.366958682628
Total CCSD energy = -150.085103316442
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7 Utility programs

7.1 heffman – manipulations with effective Hamiltonian matrices

The heffman.x program is designed to perform manipulations with FS-RCC effective Hamil-
tonians matrices. Implemented features are:

• the finite-field technique for transition dipole moments calculations [9, 19, 4];

• extraction of spin-orbit interactions from full-relativistic models by projection [2];

• Pade extrapolation of series of effective Hamiltonians.

heffman.x reads matrices of effective Hamiltonians from formatted files supported by both
EXP-T and the latest versions of DIRAC.

• to compute finite-field transition moments [19, 4] two files with effective Hamiltonians
must be provided, calculated at field 1 and field 2;

• to separate spin-orbit interactions by projection, two files with effective Hamiltonians
must be provided, the first for spin-orbit (nearly) switched off and the second for spin-
orbit switched on.

In this case you cannot freeze spinors at the FSCC step!

• to perform Pade extrapolation of the series of effective Hamiltonians, you have to put a
sequence of effective Hamiltonians to a single file using the cat command:

cat heff_n_eq_1 heff_n_eq_2 heff_n_eq_3 > some_file_name

Recall that each Hamiltonian is calculated at its own attenuation parameter n, see Sec.
5.1. You can also perform extrapolation before TDM or SO calculation, just use such
“composite” files with effective Hamiltonians.

Additional input file with options must be redirected to stdin:

heffman.x < input_file

heffman.x input files are very similar to EXP-T input files, but keywords are separated
from their arguments with the ’:’ symbol, and the symbol ’#’ at the beginning of a comment
must be placed in the first position of the line.

List of keywords:

file: file with the first effective Hamiltonian or with a sequence of heff’s to be extrapo-
lated, e.g.

• heff for the first field value;

• heff for the spin-orbit interaction (nearly) switched off;

• simply heff you want to get the eigenstates;

• sequence of heff’s you want to Pade-extrapolate.
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Syntax: file: <string path-to-first-heff>

If you are doing finite-field transition moment calculations or SO separation, you
have to supply the second file (see the next item).

file: heff for another field value, or heff for the spin-orbit switched on, respectively. If
there is no second file, the effective Hamiltonian eigenvectors and eigenvalues are
written to the formatted file HEFFEVF.

Syntax: file: <string path-to-second-heff>

sector: the Fock space sector you are interested in (heff files for higher sectors contain
several heff matrices).

Syntax: sector: <H>h<P>p

Example: 0h1p, 1h0p, 2h0p, 0h2p, 1h1p.

rep: irreducible representation you are interested in. As a rule, rep: 1 for the fully
symmetrical rep.

Syntax: rep: <integer n>

Enumeration of irreps begins from 1!

main: for the FF-TDM calculations or Pade extrapolation: simply the number of lowest
states or the range of states of given sector and symmetry you want to see in the
output file. For the SO extraction by the projected approximant construction [3]
this keyword defines the subspace of states used for projection.

Syntax: main: <integer number> or main: <integer number1>-<integer number2>.

Default: all states.

Example: main: 10 (equivalently, main: 1-10)

[L/M] (optional) to perform Pade extrapolation, you have to indicate which Pade ap-
proximant [L/M] should be constructed ([0/1], [1/1], [0/2] etc). You should have
L+M+2 effective Hamiltonian matrices to build the [L/M] approximant. You can
cut off all states above subspace done by the main keyword (see above); to do this,
add the cut keyword.

Syntax: [L/M] [cut]

Default: Padé extrapolation disabled

Example: [0/1] cut

step: only for FF calculations. Difference of field strenghts (a.u.) in two finite-field
calculations. The presence of this line activates the FF TDM calculation mode (do
not use this keyword in other types of calculations).

Syntax: step: <real value>

scale: only for SO calculations. Fraction of effective spin-orbit retained in “scalar” calcu-
lations to get good relativistic symmetries (typically of order 10−4. Omit this line
if you do not want to diabatize anything.

Syntax: scale: <real value>
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ground: ground state energy (a.u.). Useful only when you have to compute energies with
respect to some state (normally ground) which belongs to another rep or sector.

Syntax: ground: <real energy>

Default: ground: 0.0

print: print level. print: 0 or print: 1 are normally ok; enlarging this number, you
can get any amount of superfluous information listed.

Syntax: print: <integer level>

Default: print: 1

Bloch activates the computation of finite-field transition dipoles with Bloch effective
Hamiltonian eigenvectors (note: TDM matrices will be non-Hermitian, this has no
physical meaning). Otherwise, ff computations are performed with des Cloizeaux
effective Hamiltonian eigenvectors (“hermitization”).

Syntax: Bloch

Default: “hermitization” is enabled in finite-field calculations

When using any of the techniques implemented in the heffman.x program, please, cite the
corresponding paper:

• finite-field transition dipole moment calculations: [4]

• quasidiabatization by projection and SO extraction: [2]

• Pade extrapolation: [3]

Appendix A Temporary files
During the calculation, EXP-T operates with temporary files stored in the scratch directory.

We recommend to remove these temporary files after every calculation (except for those planned
to be used in the future, like the HEFF files or files with cluster amplitudes). All types of
temporary files generated by EXP-T are listed and described below.

HINT one-electron integrals – core Hamiltonian matrix + one-particle part of perturbation
(if presented). Recommended for removal after calculation.

VINT-*-*-*-* two-electron integrals. These files are generated during the integral sorting
stage. Recommended for removal after calculation.

Approximate number of files: ∼ N4
b (Nb – number of blocks into which the whole

set of spinors is divided by symmetry and the tilesize parameter)

*.sb single symmetry block of molecular integrals/cluster amplitudes. It is just a part of
a diagram. During the calculation each file is mapped to some structure in RAM.
Recommended for removal after calculation.

Approximate number of files: ∼ 10 × N4
b for CCSD, ∼ N6

b for CCSDT-n and
CCSDT models – can be very large!
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*.dg file containing diagram. Diagram files containing cluster amplitudes (t1c.dg,
t2c.dg etc) can be used in subsequent calculations when constructing the initial
approximation to amplitudes (see Sec. 4, keyword reuse).

HEFF formatted file containing effective Hamiltonian matrices. These files can be read
by the heffman.x utility program used to perform Padé extrapolation of series
of effective Hamiltonians [3], finite-field transition moments calculations [19, 4],
spin-orbit coupling calculations [2].

*DIPLEN formatted files with dipole moment integrals (just its electronic part) in the basis
of molecular spinors.

MVCOEF** binary files containing model vectors expanded in the basis of model determinants.
These files are used to organize data flow inside EXP-T in the most convenient and
logical manner; model vectors are used for calculation of model-space approxima-
tions of TDMs , etc.
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Appendix B Symmetry and irreducible representations
This section lists the names of irreducible representations (irreps) used in EXP-T.

• For nonrelativistic groups, irrep is determined by the spatial symmetry (Mulliken notation
is used) and the Ms value (for Ms >= 2 only symbol 2 is used);

• For relativistic double groups we use Mulliken-type notation (completely inherited from
DIRAC);

• For U(1) = C∞v and U(1)× Ci = D∞h irreps are determined by Ω values.

C1

A_a
A_b
A_-3/2
A_+3/2
A_0
A_4
A_+1
A_-1

C2

A_a B_a
A_b B_b
A_-3/2 B_-3/2
A_+3/2 B_+3/2
A_0 B_0
A_2 B_2
A_+1 B_+1
A_-1 B_-1

Cs

A’_a A"_a
A’_b A"_b
A’_-3/2 A"_-3/2
A’_+3/2 A"_+3/2
A’_0 A"_0"
A’_2 A"_2"
A’_+1 A"_+1
A’_-1 A"_-1
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Ci

Ag_a Au_a
Ag_b Au_b
Ag_-3/2 Au_-3/2
Ag_+3/2 Au_+3/2
Ag_0 Au_0
Ag_2 Au_2
Ag_+1 Au_+1
Ag_-1 Au_-1

C2v

A1_a B2_a B1_a A2_a
A1_b B2_b B1_b A2_b
A1_-3/2 B2_-3/2 B1_-3/2 A2_-3/2
A1_+3/2 B2_+3/2 B1_+3/2 A2_+3/2
A1_0 B2_0 B1_0 A2_0
A1_2 B2_2 B1_2 A2_2
A1_+1 B2_+1 B1_+1 A2_+1
A1_-1 B2_-1 B1_-1 A2_-1

C2h

Ag_a Bg_a Bu_a Au_a
Ag_b Bg_b Bu_b Au_b
Ag_-3/2 Bg_-3/2 Bu_-3/2 Au_-3/2
Ag_+3/2 Bg_+3/2 Bu_+3/2 Au_+3/2
Ag_0 Bg_0 Bu_0 Au_0
Ag_2 Bg_2 Bu_2 Au_2
Ag_+1 Bg_+1 Bu_+1 Au_+1
Ag_-1 Bg_-1 Bu_-1 Au_-1

D2

A_a B3_a B1_a B2_a
A_b B3_b B1_b B2_b
A_-3/2 B3_-3/2 B1_-3/2 B2_-3/2
A_+3/2 B3_+3/2 B1_+3/2 B2_+3/2
A_0 B3_0 B1_0 B2_0
A_2 B3_2 B1_2 B2_2
A_+1 B3_+1 B1_+1 B2_+1
A_-1 B3_-1 B1_-1 B2_-1
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D2h

Ag_a B1u_a B2u_a B3g_a B3u_a B2g_a B1g_a Au_a
Ag_b B1u_b B2u_b B3g_b B3u_b B2g_b B1g_b Au_b
Ag_-3/2 B1u_-3/2 B2u_-3/2 B3g_-3/2 B3u_-3/2 B2g_-3/2 B1g_-3/2 Au_-3/2
Ag_+3/2 B1u_+3/2 B2u_+3/2 B3g_+3/2 B3u_+3/2 B2g_+3/2 B1g_+3/2 Au_+3/2
Ag_0 B1u_0 B2u_0 B3g_0 B3u_0 B2g_0 B1g_0 Au_0
Ag_2 B1u_2 B2u_2 B3g_2 B3u_2 B2g_2 B1g_2 Au_2
Ag_+1 B1u_+1 B2u_+1 B3g_+1 B3u_+1 B2g_+1 B1g_+1 Au_+1
Ag_-1 B1u_-1 B2u_-1 B3g_-1 B3u_-1 B2g_-1 B1g_-1 Au_-1

C1

A
a

C2

1E 2E
a b

Cs

1E 2E
a b

Ci

AG AU
ag au

C2v

1E 2E
a b

D2

1E 2E
a b

D2h

1Eg 2Eg 1Eu 2Eu
ag bg au bu
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C∞v

1/2+ 1/2- 3/2+ 3/2- 5/2+ 5/2- 7/2+ 7/2-
9/2+ 9/2- 11/2+ 11/2- 13/2+ 13/2- 15/2+ 15/2-

17/2+ 17/2- 19/2+ 19/2- 21/2+ 21/2- 23/2+ 23/2-
25/2+ 25/2- 27/2+ 27/2- 29/2+ 29/2- 31/2+ 31/2-

0 1+ 1- 2+ 2- 3+ 3- 4+
4- 5+ 5- 6+ 6- 7+ 7- 8+
8- 9+ 9- 10+ 10- 11+ 11- 12+
12- 13+ 13- 14+ 14- 15+ 15- 16+

D∞h

1/2g+ 1/2g- 3/2g+ 3/2g- 5/2g+ 5/2g- 7/2g+ 7/2g-
9/2g+ 9/2g- 11/2g+ 11/2g- 13/2g+ 13/2g- 15/2g+ 15/2g-
1/2u+ 1/2u- 3/2u+ 3/2u- 5/2u+ 5/2u- 7/2u+ 7/2u-
9/2u+ 9/2u- 11/2u+ 11/2u- 13/2u+ 13/2u- 15/2u+ 15/2u-
0g 1g+ 1g- 2g+ 2g- 3g+ 3g- 4g+
4g- 5g+ 5g- 6g+ 6g- 7g+ 7g- 8g+
0u 1u+ 1u- 2u+ 2u- 3u+ 3u- 4u+
4u- 5u+ 5u- 6u+ 6u- 7u+ 7u- 8u+
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